Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the absorption enhancement of black carbon in the atmosphere

نویسندگان

  • Yuxuan Zhang
  • Qiang Zhang
  • Yafang Cheng
  • Hang Su
  • Simonas Kecorius
  • Zhibin Wang
  • Zhijun Wu
  • Min Hu
  • Tong Zhu
  • Alfred Wiedensohler
  • Kebin He
چکیده

The morphology and density of black carbon (BC) cores in internally mixed BC (In-BC) particles affect their mixing state and absorption enhancement. In this work, we developed a new method to measure the morphology and effective density of the BC cores of ambient In-BC particles using a single-particle soot photometer (SP2) and a volatility tandem differential mobility analyzer (VTDMA) during the CAREBeijing-2013 campaign from 8 to 27 July 2013 at Xianghe Observatory. This new measurement system can select size-resolved ambient In-BC particles and measure the mobility diameter and mass of the In-BC cores. The morphology and effective density of the ambient InBC cores are then calculated. For the In-BC cores in the atmosphere, changes in their dynamic shape factor (χ) and effective density (ρeff) can be characterized as a function of the aging process (Dp/Dc) measured by SP2 and VTDMA. During an intensive field study, the ambient In-BC cores had an average shape factor χ of ∼ 1.2 and an average density of ∼ 1.2 g cm, indicating that ambient In-BC cores have a near-spherical shape with an internal void of ∼ 30 %. From the measured morphology and density, the average shell / core ratio and absorption enhancement (Eab) of ambient BC were estimated to be 2.1–2.7 and 1.6–1.9, respectively, for In-BC particles with sizes of 200–350 nm. When the In-BC cores were assumed to have a void-free BC sphere with a density of 1.8 g cm, the shell / core ratio and Eab were overestimated by ∼ 13 and ∼ 17 %, respectively. The new approach developed in this work improves the calculations of the mixing state and optical properties of ambient In-BC particles by quantifying the changes in the morphology and density of ambient In-BC cores during aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites

To prevent serious electromagnetic interference, a single-layer and double layer wave-absorbing coating employing complex absorbents composed of carbon black with epoxy resin as matrix was prepared. The morphologies of carbon black /epoxy composites were characterized by scanning electron microscope  and atomic force microscope, respectively. The carbon black  particles exhibit obvious polyarom...

متن کامل

Investigation of the effect of Argon flow on the morphology of B4C nanoparticles synthesized by the VLS method

In this paper, new various morphologies of boron carbide were successfully synthesized using carbon black, activated carbon and boron oxide precursors as well as using cobalt nanoparticles as catalysts. Almost the whole morphology of synthesized boron carbide are consisted of smooth nanowires and nanobelts. With decreasing the carbon black particles size from 29 nm to 13 nm (29, 23, 17 and 13),...

متن کامل

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

Synthesis of Boron Nitride powder by carbothermal method, using phenolic resin and carbon black and investigating the effect of additive of calcium carbonate

Effect of CaCO3 on carbothermic formation of hexagonal boron nitride (h-BN) was investigated. B2O3–C mixtures containing CaCO3 additive were reacted at 1500   for 120 min in nitrogen atmosphere. Formed phases in the reaction products were determined by powder-XRD analyses, and amounts of the constituents were determined by chemical analyses. Particle size and morphology of the formed h-BN powde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016